ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Joonhong Ahn, Atsuyuki Suzuki, Ryohei Kiyose
Nuclear Technology | Volume 64 | Number 2 | February 1984 | Pages 154-165
Technical Paper | Radioactive Waste Management | doi.org/10.13182/NT84-A33338
Articles are hosted by Taylor and Francis Online.
A computational analysis of nuclide migration through fissured geological formations was performed. The migration behavior can be described by convective transport in the fissures, diffusive transport with radioactive decay chain in the bulk rock, and sorption on the fissure wall. The mathematical model employed is based on the finite element method (FEM) solution of transport equations, taking into account the interfissure two-dimensional diffusion. The decay chain, 234U → 230Th → 226Ra, was examined to illustrate the migration behavior. The FEM solution was in good agreement with the analytical solution using simpler assumptions. Numerically investigated were the effects of (a) the decay chain in pores, (b) two-dimensional diffusion in pores, (c) the axial dispersion in fissures, (d) the interaction between fissures, and (e) the fissure wall sorption. As a result, it can be said that the effect of the decay chain in pores is especially important in order not to have overestimates in terms of safety and that the fissure wall sorption is an important factor for realistic estimates because it has a remarkable effect on the extent of nuclide confinement within the geological media.