ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Dragonfly, a Pu-fueled drone heading to Titan, gets key NASA approval
Curiosity landed on Mars sporting a radioisotope thermoelectric generator (RTG) in 2012, and a second NASA rover, Perseverance, landed in 2021. Both are still rolling across the red planet in the name of science. Another exploratory craft with a similar plutonium-238–fueled RTG but a very different mission—to fly between multiple test sites on Titan, Saturn’s largest moon—recently got one step closer to deployment.
On April 25, NASA and the Johns Hopkins University Applied Physics Laboratory (APL) announced that the Dragonfly mission to Saturn’s icy moon passed its critical design review. “Passing this mission milestone means that Dragonfly’s mission design, fabrication, integration, and test plans are all approved, and the mission can now turn its attention to the construction of the spacecraft itself,” according to NASA.
Frank H. Ruddy, Abdul R. Dulloo, John G. Seidel, Frederick W. Hantz, Louis R. Grobmyer
Nuclear Technology | Volume 140 | Number 2 | November 2002 | Pages 198-208
Technical Paper | Nuclear Plant Instrumentation, Control, and Human-Machine Interface Technologies | doi.org/10.13182/NT02-A3333
Articles are hosted by Taylor and Francis Online.
Silicon carbide semiconductor neutron detectors are being developed for use as ex-vessel power monitors for pressurized water reactors. Key features such as neutron response, radiation resistance, and high-temperature operation have been explored for silicon carbide detectors, and the results are consistent with their use in the ex-vessel environment. Prototype silicon carbide ex-core neutron detectors have been assembled and tested under research reactor conditions simulating ex-core neutron monitoring requirements. Linear, pulse-mode operation without the need for gamma compensation has been demonstrated with these prototype detectors. The silicon carbide detectors are compared to presently deployed gas-filled ex-vessel detectors, and several advantages of the silicon carbide technology can be seen. It is anticipated that a wide-range silicon carbide neutron detector can be designed to replace the combined functions of the multiple power range detectors in use. Furthermore, the need for gamma-ray compensation will be eliminated, and more efficient reactor operation and simplified reactor operating procedures will result.