ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Emin Yilmaz, Barclay G. Jones
Nuclear Technology | Volume 64 | Number 1 | January 1984 | Pages 88-100
Technical Note | Fission Reactor | doi.org/10.13182/NT84-A33329
Articles are hosted by Taylor and Francis Online.
A group of computer codes has been selected and obtained from the Nuclear Energy Agency data bank in France for the core conversion study of highly enriched research reactors. The ANISN, WIMS-D4, MC2, COBRA-3M, FEVER, THERMOS, GAM-2, CINDER, and EXTERMINATOR codes were selected for the study. For the final work, THERMOS, GAM-2, CINDER, and EXTERMINATOR were selected and used. A one-dimensional thermal-hydraulics code has also been used to calculate temperature distributions in the core. The THERMOS and CINDER codes have been modified to serve the purpose. Minor modifications have been made to GAM2 and EXTERMINATOR to improve their utilization. All of the codes have been debugged on both CDC and IBM computers at the University of Illinois. The International Atomic Energy Agency (IAEA) 10-MW benchmark problem has been solved. Results of this work have been compared with the IAEA contributors’ results. Agreement is very good for highly enriched uranium fuel. Deviations from the IAEA contributors’ mean value for low enriched uranium fuel exist, but they are small enough in general. Deviation of keff is ∼0.5% for both enrichments at the beginning of life and at the end of life. Flux ratios deviate only ∼1.5% from the IAEA contributors’ mean value.