ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
Alex Tsechanski, Gad Shani
Nuclear Technology | Volume 64 | Number 1 | January 1984 | Pages 78-87
Technical Paper | Technique | doi.org/10.13182/NT84-A33328
Articles are hosted by Taylor and Francis Online.
A well-collimated T(d,n)4He fast neutron beam has been used to investigate the possibility of a precise measurement of the energy of fast neutrons using a 2- × 2-in. NE-213 liquid scintillator. Four sets of measurements were performed at 0-, 85-, 90-, and 95-deg nominal angles of the deuteron beam relative to the collimator axis. This experimental setup provides monoenergetic neutrons with nominal energies of 14.697, 14.115, 14.061, and 14.007 MeV, respectively. The results of the energy measurement of these monoenergetic neutrons are 14.718 ± 0.0292 MeV, 14.124 ± 0.0177 MeV, 14.072 ± 0.0144 MeV, and 14.028 ± 0.0155 MeV. The proton recoil spectra created in the liquid scintillator were unfolded with the FORIST unfolding code. The center of gravity of the measured neutron peak was assumed to be the value of the exact neutron energy.