ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Alex Tsechanski, Gad Shani
Nuclear Technology | Volume 64 | Number 1 | January 1984 | Pages 78-87
Technical Paper | Technique | doi.org/10.13182/NT84-A33328
Articles are hosted by Taylor and Francis Online.
A well-collimated T(d,n)4He fast neutron beam has been used to investigate the possibility of a precise measurement of the energy of fast neutrons using a 2- × 2-in. NE-213 liquid scintillator. Four sets of measurements were performed at 0-, 85-, 90-, and 95-deg nominal angles of the deuteron beam relative to the collimator axis. This experimental setup provides monoenergetic neutrons with nominal energies of 14.697, 14.115, 14.061, and 14.007 MeV, respectively. The results of the energy measurement of these monoenergetic neutrons are 14.718 ± 0.0292 MeV, 14.124 ± 0.0177 MeV, 14.072 ± 0.0144 MeV, and 14.028 ± 0.0155 MeV. The proton recoil spectra created in the liquid scintillator were unfolded with the FORIST unfolding code. The center of gravity of the measured neutron peak was assumed to be the value of the exact neutron energy.