ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Nuclear energy for maritime shipping and coastal applications
The Boston-based Deon Policy Institute has published a white paper that examines the applications of nuclear energy in the maritime sector—specifically, floating nuclear power plants and nuclear propulsion for commercial vessels. Topics covered include available technologies, preliminary cost estimates, and a status update on the regulatory framework.
Unique opportunity: The paper points out that nuclear energy has the potential to benefit the shipping industry with high energy efficiency, lower operating costs, and zero carbon emissions. The report has a special focus on Greece, a nation that controls about 20 percent of the global commercial fleet and thus has an opportunity to take a leading role in the transition to nuclear-powered shipping.
Man Gyun Na, Seungrohk Oh
Nuclear Technology | Volume 140 | Number 2 | November 2002 | Pages 178-197
Technical Paper | Nuclear Plant Instrumentation, Control, and Human-Machine Interface Technologies | doi.org/10.13182/NT02-A3332
Articles are hosted by Taylor and Francis Online.
A neuro-fuzzy inference system combined with the wavelet denoising, principal component analysis (PCA), and sequential probability ratio test (SPRT) methods has been developed to monitor the relevant sensor using the information of other sensors. The parameters of the neuro-fuzzy inference system that estimates the relevant sensor signal are optimized by a genetic algorithm and a least-squares algorithm. The wavelet denoising technique was applied to remove noise components in input signals into the neuro-fuzzy system. By reducing the dimension of an input space into the neuro-fuzzy system without losing a significant amount of information, the PCA was used to reduce the time necessary to train the neuro-fuzzy system, simplify the structure of the neuro-fuzzy inference system, and also, make easy the selection of the input signals into the neuro-fuzzy system. By using the residual signals between the estimated signals and the measured signals, the SPRT is applied to detect whether the sensors are degraded or not. The proposed sensor-monitoring algorithm was verified through applications to the pressurizer water level, the pressurizer pressure, and the hot-leg temperature sensors in pressurized water reactors.