ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
Amos Notea, Yitzhak Segal
Nuclear Technology | Volume 63 | Number 1 | October 1983 | Pages 121-128
Technical Paper | Radioisotopes and Isotope | doi.org/10.13182/NT83-A33308
Articles are hosted by Taylor and Francis Online.
The characteristic functions of dynamic gauges, based on nuclear or atomic radiation, were developed. These gauges are applied to the examination of material whose properties may vary continuously with time. The approach presented takes into consideration contributions to the uncertainty and blurring from various effects, such as radiation scattering, gauge geometry, and the system’s time constant. The analysis is based on the concept of the line spread function obtained from the derivation of the response to a step change in the inspected property. The response and relative resolving functions were demonstrated for a rectangular change with a gamma-through transmission gauge. The procedure provides a systematic method of obtaining the optimal values for the design parameters of the radio gauge, such as radiation energy, source emission rate, detection efficiency, detector-sample distance, and measurement time. The time constant, for example, reveals a pronounced minimal value for large relative velocity. Due to the radiation scattering in the examined material, there is an advantage to large detector-material distance. The design values may differ considerably more for the dynamic gauge than for a static gauge, i.e., a gauge applied to samples whose properties do not vary during the measurement period.