ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
William L. Kuhn, Richard D. Peters, Scott A. Simonson
Nuclear Technology | Volume 63 | Number 1 | October 1983 | Pages 82-89
Technical Paper | Radioactive Waste Management | doi.org/10.13182/NT83-A33304
Articles are hosted by Taylor and Francis Online.
A leach model is presented for a commonly studied commercial nuclear waste glass, PNL 76-68. Boron release is taken to be a monitor of the reaction rate of the glass, while the actual releases of many other glass constituents into solution during static tests are evidently controlled by solubilities. The reaction rate determined in this way passes from linear to parabolic kinetics over the duration of the experiments analyzed, and boron concentrations in solution are found to be a function of the product of time and surface area-to-solution volume ratio. This behavior is found to be explained well by assuming the reaction is impeded by resorption of reaction products onto the reacting surface. Two model parameters are found as functions of temperature by fitting the model to published data. It is concluded that the accumulation of silica near the glass surface in a waste package in a repository could limit the rate of reaction of the glass, but not that the reaction would cease as silica reaches its solubility limit in solution.