ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
N. Scott Cannon, Gary L. Wire
Nuclear Technology | Volume 63 | Number 1 | October 1983 | Pages 50-62
Technical Paper | Nuclear Fuel | doi.org/10.13182/NT83-A33302
Articles are hosted by Taylor and Francis Online.
A new simulated transient test capability is introduced that allows controlled biaxial strain-rate (CBSR) tests on fast reactor cladding to be performed at constant test temperatures ranging from 425 to 650°C and constant diametral strain rates between 10−5 and 10−3/s. The CBSR test results from both irradiated and unirradiated 20% cold-worked Type 316 stainless steel are reported. A mathematical expression describing CBSR strengths was developed from tensile data. The CBSR ductility was generally found to be reduced from corresponding tensile results by roughly an order of magnitude. For unirradiated cladding, diametral failure strain was relatively strain-rate independent below 650°C, and at 650°C, failure strains increased with decreasing strain rate. Following fast reactor irradiation at 370 to 680°C cladding, diametral failure strains increased with increasing irradiation temperature. The sensitive diameter measurement apparatus allowed strain determinations showing the importance of anelastic effects at low plastic strains.