ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Michael P. Manahan
Nuclear Technology | Volume 63 | Number 2 | November 1983 | Pages 295-315
Technical Paper | Material | doi.org/10.13182/NT83-A33289
Articles are hosted by Taylor and Francis Online.
A Miniaturized Disk Bend Test (MDBT) capable of extracting postirradiation mechanical behavior information from disk-shaped specimens no larger than those used for transmission electron microscopy has been successfully developed. Finite element analysis is performed to convert the experimentally measured data into useful engineering information. A new finite element frictional contact boundary condition model has been developed that is essential in modeling the non-uniform strain fields present in the MDBT specimen. The MDBT methodology has been shown to be capable of delivering uniaxial stress/strain information with approximately the same level of accuracy as that present in the more conventional uniaxial tensile testing approach. A data inversion strategy has been developed and applied to irradiated materials to determine uniaxial tensile behavior. Since neutron irradiation costs scale with specimen volume, this miniaturized mechanical behavior test can now provide significant savings in irradiation testing costs for nuclear materials used in fusion and other nuclear technologies. In addition, it is now possible to provide mechanical behavior information not ordinarily obtainable due to space limitations in irradiation experiments, and thus expedite alloy development investigations.