ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Michael P. Manahan
Nuclear Technology | Volume 63 | Number 2 | November 1983 | Pages 295-315
Technical Paper | Material | doi.org/10.13182/NT83-A33289
Articles are hosted by Taylor and Francis Online.
A Miniaturized Disk Bend Test (MDBT) capable of extracting postirradiation mechanical behavior information from disk-shaped specimens no larger than those used for transmission electron microscopy has been successfully developed. Finite element analysis is performed to convert the experimentally measured data into useful engineering information. A new finite element frictional contact boundary condition model has been developed that is essential in modeling the non-uniform strain fields present in the MDBT specimen. The MDBT methodology has been shown to be capable of delivering uniaxial stress/strain information with approximately the same level of accuracy as that present in the more conventional uniaxial tensile testing approach. A data inversion strategy has been developed and applied to irradiated materials to determine uniaxial tensile behavior. Since neutron irradiation costs scale with specimen volume, this miniaturized mechanical behavior test can now provide significant savings in irradiation testing costs for nuclear materials used in fusion and other nuclear technologies. In addition, it is now possible to provide mechanical behavior information not ordinarily obtainable due to space limitations in irradiation experiments, and thus expedite alloy development investigations.