ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
M. Broc, J. Sannier, G. Santarini
Nuclear Technology | Volume 63 | Number 2 | November 1983 | Pages 197-208
Technical Paper | Fission Reactor | doi.org/10.13182/NT83-A33280
Articles are hosted by Taylor and Francis Online.
A set of experimental studies is presented as a first approach to the problems that liquid-lead circuits might pose in the molten salt reactor design with cooling by direct contact between the salt and this liquid metal. Technologically it appears that the components of circuits developed for the use of liquid sodium in fast neutron breeder reactors (valves, electromagnetic pumps and flowmeters, pressure transducers, and cold traps) can be used in the presence of liquid lead, though with certain restrictions. Where corrosion is concerned, ferritic steels, although subject to mass transfer phenomena, are much more resistant than austenitic steels at the temperatures currently adopted in the molten salt reactor design. Finally, liquid lead could have a slight embrittling effect on ferritic steels, but this phenomenon needs to be checked more thoroughly.