ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
U.K.’s NWS gets input from young people on geological disposal
Nuclear Waste Services, the radioactive waste management subsidiary of the United Kingdom’s Nuclear Decommissioning Authority, has reported on its inaugural year of the National Youth Forum on Geological Disposal forum. NWS set up the initiative, in partnership with the environmental consultancy firm ARUP and the not-for-profit organization The Young Foundation, to give young people the chance to share their views on the government’s plans to develop a geological disposal facility (GDF) for the safe, secure, and long-term disposal of radioactive waste.
Kenneth J. Hofstetter, C. G. Hitz, V. F. Baston, Anthony P. Malinauskas
Nuclear Technology | Volume 63 | Number 3 | December 1983 | Pages 461-469
Technical Paper | Radioactive Waste Management | doi.org/10.13182/NT83-A33272
Articles are hosted by Taylor and Francis Online.
Radionuclide concentration data taken during decontamination of the primary reactor coolant system at Three Mile Island by a feed-and-bleed process have provided information on future defueling operations. Analysis of the radiocesium concentrations in samples taken at the letdown point indicates general circulation within the primary system, including the reactor vessel and both steam generators. A standard dilution model with parameters consistent with engineering estimates (volume, flow rate, etc.) accurately predicts the radiocesium decontamination rates. Unlike cesium, the behavior of other principal soluble radionuclides (90Sr and 3H) cannot be readily described by dilution theory. A significant appearance rate is observed for 90Sr suggesting a chemical solubility mechanism. The use of processed water containing high 3H for makeup causes uncertainty in the interpretation of the 3H analysis.