ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Michel Colin, Michel Coquerelle, Ian L. F. Ray, Claudio Ronchi, Clive T. Walker, Hubert Blank
Nuclear Technology | Volume 63 | Number 3 | December 1983 | Pages 442-460
Technical Paper | Nuclear Fuel | doi.org/10.13182/NT83-A33271
Articles are hosted by Taylor and Francis Online.
A detailed analysis of hyperstoichiometric carbide fuel, which operated under sodium-bonding conditions up to 12.5 at. % burnup in the Rapsodie reactor, yields the description of the four contributions to geometric fuel swelling as functions of temperature and burnup: (a) solid fission products and cesium, (b) fission gas swelling, (c) coarse porosity, and (d) the sum of all direct and indirect statistical swelling effects arising from the fracturing of the pellets. Fission gas swelling has to be separated into the contributions of three bubble populations and gas in solution. Between 7 and 11 at.% burnup, the relative amounts of the four swelling contributions are about the same and do not vary with burnup. The total amount of the cross-sectional swelling ΓA of a pellet can be approximately represented as a function of burnup F and linear heat rating x byΓA = b×Fn,where b and n are empirical constants and b decreases as a function of fuel composition in the order MC > MC M2C3 > M(C,N) > MN. The carbide pins investigated in this work, having a smear density of 72% and maximum linear heat rating of 88 kW/m at a cladding temperature of 820 K, reach a maximum burnup of 12.5 at.% with very little fuel-cladding mechanical interaction. The most promising development potential for carbide fuel lies in improving its mechanical properties, i.e., in reducing the propensity of the pellets to fracture.