ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The RAIN scale: A good intention that falls short
Radiation protection specialists agree that clear communication of radiation risks remains a vexing challenge that cannot be solved solely by finding new ways to convey technical information.
Earlier this year, an article in Nuclear News described a new radiation risk communication tool, known as the Radiation Index, or, RAIN (“Let it RAIN: A new approach to radiation communication,” NN, Jan. 2025, p. 36). The authors of the article created the RAIN scale to improve radiation risk communication to the general public who are not well-versed in important aspects of radiation exposures, including radiation dose quantities, units, and values; associated health consequences; and the benefits derived from radiation exposures.
Tomaz Zagar, Matjaz Ravnik
Nuclear Technology | Volume 140 | Number 1 | October 2002 | Pages 113-126
Technical Paper | Radioisotopes | doi.org/10.13182/NT02-A3327
Articles are hosted by Taylor and Francis Online.
The results of activation studies of TRIGA research reactor concrete shielding are given. Samples made of ordinary and barytes concrete were irradiated in the reactor to simulate neutron activation in the shielding concrete. Long-lived neutron-induced gamma-ray-emitting radioactive nuclides were measured in the samples with a high-purity germanium detector. The most active long-lived radioactive nuclides in the ordinary concrete samples were found to be 60Co and 152Eu. In the barytes concrete samples, the most active long-lived radioactive nuclides were 60Co, 133Ba, and 152Eu. Activation in the concrete was also calculated using the ORIGEN2 code and compared to experimental results. Simple radioactive nuclide generation and depletion calculation using one-group cross-section libraries provided together with the ORIGEN2 code did not give conservative results. Significant discrepancies were observed for some nuclides. For accurate long-lived radioactive nuclide generation in reactor shielding, material-specific cross-section libraries should be generated and verified by measurement.