ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
Jeff Place on INPO’s strategy for industry growth
As executive vice president for industry strategy at the Institute of Nuclear Power Operations, Jeff Place leads INPO’s industry-facing work, engaging directly with chief nuclear officers.
Constantine P. Tzanos, Nelson A. Hanan, Achilles G. Adamantiades
Nuclear Technology | Volume 63 | Number 3 | December 1983 | Pages 369-396
Technical Paper | Nuclear Safety | doi.org/10.13182/NT83-A33266
Articles are hosted by Taylor and Francis Online.
A comparative assessment of the core degradation frequency due to internal accident initiators between a typical large liquid-metal fast breeder reactor (LMFBR) design and pressurized water reactors (PWRs) has been performed. For the PWR system, existing analyses have been utilized. For the reference LMFBR, an extensive analysis has been performed for two accident initiators, i.e., loss of off-site power and loss of main feedwater. Based on this analysis an estimate of ∼1 × 10-6/reactor·yr has been obtained for the core degradation frequency of the reference LMFBR. This estimate is significantly smaller than the PWR core degradation frequency (∼6 ×10-5/yr). A sensitivity analysis shows that the parameters having the largest impact on the unavailability of decay heat removal are (a) for the “loss of off-site power” initiator: human error and failure to restore off-site power, and (b) for the “loss of main feedwater” initiator: the leakage rates of the passive decay heat removal system and the adoption of the policy to repair the Na-NaK heat exchanger only during normal shutdowns. The results indicate that the LMFBR system has the potential of higher resistance than the PWR system to the accident initiators considered. The lower core degradation frequency estimated for the LMFBR system is due to the presence of two redundant and diverse reactor shutdown systems, with a self-actuated feature included in one of them, the incorporation of a passive decay heat removal system, and the significantly lower sensitivity of the reference LMFBR to primary system pipe breaks.