ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Wolfgang von Heesen, Heinz Malmström, Rüdiger Detzer, Werner Loew
Nuclear Technology | Volume 62 | Number 1 | July 1983 | Pages 62-70
Technical Paper | Nuclear Fuel | doi.org/10.13182/NT83-A33232
Articles are hosted by Taylor and Francis Online.
Interim storage plants for spent fuel elements, based on dry storage technology in transport casks, are planned in the Federal Republic of Germany. The casks are arranged in storage buildings. The decay heat is removed from the outer cask surfaces by natural convection of air entering the building through openings in the walls, and leaving through outlets in the roof As the differential equations describing the complex three-dimensional flow and temperature field can only be solved for simple boundary conditions, experiments were conducted using scaled-down models of the casks and the building The relevant similarity conditions have been investigated and used for design and operation of the 1:5 scale test setup. The cask models were heated electrically. Cask temperatures, air temperatures, as well as air flow and velocities, were measured It was found that the cooling conditions at the different cask positions show very small differences and that the cask surface temperatures inside the building are a maximum of 10°C higher than on a free-standing cask