ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep Space: The new frontier of radiation controls
In commercial nuclear power, there has always been a deliberate tension between the regulator and the utility owner. The regulator fundamentally exists to protect the worker, and the utility, to make a profit. It is a win-win balance.
From the U.S. nuclear industry has emerged a brilliantly successful occupational nuclear safety record—largely the result of an ALARA (as low as reasonably achievable) process that has driven exposure rates down to what only a decade ago would have been considered unthinkable. In the U.S. nuclear industry, the system has accomplished an excellent, nearly seamless process that succeeds to the benefit of both employee and utility owner.
Alex Tsechanski, Gad Shani
Nuclear Technology | Volume 62 | Number 2 | August 1983 | Pages 227-237
Technical Paper | Analyse | doi.org/10.13182/NT83-A33220
Articles are hosted by Taylor and Francis Online.
A 95- X 95- X 95-cm nuclear grade graphite stack was bombarded with a well-collimated monoenergetic 14.75- ± 0.05-MeV fast neutron beam from a tritium target of a neutron generator. The neutron spectra measured in such types of integral experiments are susceptible to the various neutron interactions (elastic and inelastic scattering by the first few excited levels including anisotropy of angular distributions). This, in turn, facilitates identification and treatment of discrepancies between the experimental and calcula-tional results. The neutron spectra were measured with a 50- X 50-mm NE-213 liquid scintillator using the pulse shape discrimination technique to reject gamma-ray counts. The linearity test of the neutron spectrometer was performed by means of radioactive gamma-ray sources and D(d,n)He3 and T(d,n)He4 neutrons. Amplification factors (in light units per channel) were achieved with a 11Na22 radioactive source. The spectrometer was checked with the D(d,n)He3, T(d,n)He4 reactions and an americium-beryllium radioactive neutron source. The measured proton recoil spectra were unfolded in the neutron spectra by the FORIST unfolding code.