ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
NRC grants Clinton and Dresden license renewals
Three commercial power reactors across two Illinois nuclear power plants—Constellation’s Clinton and Dresden—have had their licenses renewed for 20 more years by the Nuclear Regulatory Commission.
Rajesh K. Ahluwalia, Thanh Q. Hua
Nuclear Technology | Volume 140 | Number 1 | October 2002 | Pages 41-50
Technical Paper | Reprocessing | doi.org/10.13182/NT02-A3322
Articles are hosted by Taylor and Francis Online.
During anodic dissolution of irradiated binary Experimental Breeder Reactor-II fuel, a portion of the electrorefined uranium collects in the underlying cadmium pool. It is periodically recovered by setting up a cell configuration in which the pool is made the anode and uranium is electrodeposited on a solid cathode mandrel. A theoretical model is used to determine the current structure of the liquid cadmium anode. The model is validated by comparing against the measured composition of the cathode deposits. Multinodal simulations are conducted to explain the bell shape of deposits observed with this mode of electrotransport. The simulations also determine the dependence of collection efficiency on the electrical charge passed that is functionally consistent with the experimental data. Finally, a simplified operating map of the electrorefiner is presented that can be used to determine the conditions for growing cathode deposits of target composition.