ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Dragonfly, a Pu-fueled drone heading to Titan, gets key NASA approval
Curiosity landed on Mars sporting a radioisotope thermoelectric generator (RTG) in 2012, and a second NASA rover, Perseverance, landed in 2021. Both are still rolling across the red planet in the name of science. Another exploratory craft with a similar plutonium-238–fueled RTG but a very different mission—to fly between multiple test sites on Titan, Saturn’s largest moon—recently got one step closer to deployment.
On April 25, NASA and the Johns Hopkins University Applied Physics Laboratory (APL) announced that the Dragonfly mission to Saturn’s icy moon passed its critical design review. “Passing this mission milestone means that Dragonfly’s mission design, fabrication, integration, and test plans are all approved, and the mission can now turn its attention to the construction of the spacecraft itself,” according to NASA.
Johan Carlsson, Hartmut Wider
Nuclear Technology | Volume 140 | Number 1 | October 2002 | Pages 28-40
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT02-A3321
Articles are hosted by Taylor and Francis Online.
The passive emergency decay heat removal during severe cooling accidents in Pb/Bi-cooled 80- and 250-MW(thermal) accelerator-driven system (ADS) designs was investigated with the computational fluid dynamics code STAR-CD. For the 80-MW(thermal) design, the calculations show that no structural problems occur as long as the accelerator proton beam is switched off immediately after accident initiation. A highly unlikely delay of beam stop by 30 min after a combined loss-of-heat-sink and loss-of-flow accident would lead to increased reactor vessel temperatures, which do not cause creep failure. By using a melt-rupture disk on the vacuum pipe of the accelerator proton beam to interrupt the beam at elevated temperatures in a passive manner, the grace time before beam stop is necessary is increased from 30 min to 6 h. An emergency decay heat removal design, which would prevent radioactive release to the atmosphere even more reliably than the Power Reactor Inherently Safe Module (PRISM) design, was also investigated. For an ADS of 250-MW(thermal) power with the same vessel as the 80-MW(thermal) ADS examined, the maximum wall temperature reaches 745 K after an immediate beam stop. This does not cause any structural problems either. The grace time until a beam stop becomes necessary for the 250-MW(thermal) system was found to be ~12 min. To reduce elevated vessel temperatures more rapidly after a beam stop, alternative cooling methods were investigated, for example, filling the gap between the reactor and the guard vessel with liquid metal and the simultaneous use of water spray cooling on the outside of the guard vessel. This decreases the coolant temperatures already within minutes after switching off the proton beam. The use of chimneys on the reactor vessel auxiliary cooling system, which increase the airflow rate lowers the maximum reactor vessel wall temperature only by ~20 K. It can be concluded that the critical parameter for the emergency cooling of an ADS is the time delay in switching off the accelerator after accident initiation.