ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Neil M. Howard, Mitchell J. Krasnopoler
Nuclear Technology | Volume 61 | Number 2 | May 1983 | Pages 329-337
Technical Paper | Second International RETRAN Meeting / Fission reactor | doi.org/10.13182/NT83-A33200
Articles are hosted by Taylor and Francis Online.
A simplified approach for the calculation of tornado depressurization effects on nuclear power plant structures and components is based on a generic computer depressurization analysis for an arbitrary single volume V connected to the atmosphere by an effective vent area A. For a given tornado depressurization transient, the maximum depressurization ΔP of the volume was found to depend on the parameter V/A. The relation between ΔP and V/A can be represented by a single monotonically increasing curve for each of the three design-basis tornadoes described in the U.S. Nuclear Regulatory Commission’s Regulatory Guide 1.76. These curves can be applied to most multiple-volume nuclear power plant structures by considering each volume and its controlling vent area. Where several possible flow areas could be controlling, the maximum value of V/A can be used to estimate a conservative value for ΔP. This simplified approach was shown to yield reasonably conservative results when compared to detailed computer calculations of moderately complex geometries. Treatment of severely complicated geometries, heating and ventilation systems, and multiple blowout panel arrangements were found to be beyond the limitations of the simplified analysis.