ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
The U.S. Million Person Study of Low-Dose-Rate Health Effects
There is a critical knowledge gap regarding the health consequences of exposure to radiation received gradually over time. While there is a plethora of studies on the risks of adverse outcomes from both acute and high-dose exposures, including the landmark study of atomic bomb survivors, these are not characteristic of the chronic exposure to low-dose radiation encountered in occupational and public settings. In addition, smaller cohorts have limited numbers leading to reduced statistical power.
A. A. Farooq Ansari, Kevin J. Burns, Douglas K. Beller, Quazi A. Haque, Stephen P. Schultz
Nuclear Technology | Volume 61 | Number 2 | May 1983 | Pages 205-211
Technical Paper | Second International RETRAN Meeting / Heat Transfer and Fluid Flow | doi.org/10.13182/NT83-A33191
Articles are hosted by Taylor and Francis Online.
The steady-state operating limit for boiling water reactors (BWRs) is determined by calculating the transient change in the critical power ratio (CPR). To determine the operating limit CPR, a method for calculating the ΔCPR during transients is needed. The RETRAN code can be used as a tool in the evaluation of transient CPRs for determining the operating margin for BWRs. Since the RETRAN code does not contain a critical power calculation, the ΔCPR cannot be obtained directly from RETRAN. Therefore, a program, TCPYA01, designed to evaluate transient CPR (and ΔCPR) based on the GEXL correlation using time-dependent conditions from RETRAN was used. The justification for using the RETRAN code is provided by predicting transient boiling transition data taken at the GE-ATLAS loop facility. Results of the sensitivity studies performed on nodalization, void models, and time-step size are also provided.