ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
Manuel G. Vigil, Amado A. Trujillo, H. Richard Yoshimura
Nuclear Technology | Volume 61 | Number 3 | June 1983 | Pages 514-520
Technical Paper | New Directions in Nuclear Energy with Emphasis on Fuel Cycles / Radioactive Waste Management | doi.org/10.13182/NT83-A33176
Articles are hosted by Taylor and Francis Online.
Full-scale experimental measurements on the thermal effects of torch fires on a large spent nuclear fuel shipping cask have been obtained. The measured temperature data in the various materials of the multilayered cask are unique, since no torch tests have been previously performed on a cask. These data were obtained during a series of four torch tests that simulate a situation in which the relief valve of a liquefied gas tank railcar has been opened and the contents are vented and ignited so that the resultant torch impinges on the cask. An existing spent fuel cask was modified, and temperature data were obtained in the various materials of the multilayered cask using stainless-steel sheathed thermocouples. Results of these tests indicated that the surface temperatures for the cask with a voided neutron shield were about twice as high as those for a cask having a neutron shield filled with water. The wood in the impact limiter effectively prevented thermal penetration, limiting the temperature rise of the inner cavity to only 13°C in test 4. The maximum temperature rise of the inner cavity surface, which occurred in test 3 with the neutron shield voided, was 80°C. These thermal data will be used to refine a transient thermal analytical model, which can then be utilized to predict the thermal response of other nuclear material shipping system designs subjected to torch fire environments.