ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
Deep Isolation asks states to include waste disposal in their nuclear strategy
Nuclear waste disposal technology company Deep Isolation is asking that the National Association of State Energy Officials (NASEO) consider how spent nuclear fuel and radioactive waste will be managed under its strategy for developing advanced nuclear power projects in participating states.
K. Hilpert, R. Odoj, H. W. Nürnberg
Nuclear Technology | Volume 61 | Number 1 | April 1983 | Pages 71-77
Technical Paper | Nuclear Fuel | doi.org/10.13182/NT83-A33144
Articles are hosted by Taylor and Francis Online.
The potential of Al2O3/SiO2 additives for the retention of cesium in coated particles of high-temperature gas-cooled reactors is elucidated by fundamental studies of the system Cs2O−Al2O3−SiO2. Samples with nine different compositions were prepared by applying hydrothermal crystallization. Their phase composition was studied by x-ray diffraction extending the knowledge about the phase diagram. The vaporization of the samples was investigated with high-temperature mass spectrometry. From the partial pressures obtained for cesium, the efficiency of the various cesium aluminosilicate phases for the retention of cesium can be determined. The cesium pressures together with the phases observed in the samples provide the basis for cesium retention as a function of the optimum composition and quantity of the Al2O3/SiO2 additives. By comparing the cesium partial pressures over the various cesium aluminosilicates with those that are necessary for the formation of cesium lamellar compounds in reactor-grade graphite and pyrolytic graphite, it is found that lamellar compounds cannot be formed in coated particles if cesium aluminosilicates are formed.