ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Jeffrey Rest
Nuclear Technology | Volume 61 | Number 1 | April 1983 | Pages 33-48
Technical Paper | Nuclear Safety | doi.org/10.13182/NT83-A33141
Articles are hosted by Taylor and Francis Online.
As the noble gases play a major role in establishing the interconnection of escape routes from the interior to the exterior of nuclear reactor fuel, a realistic description of the release of volatile fission products (VFPs) must a priori include a realistic description of fission gas release and swelling. In addition, as the VFPs are, in general, quite soluble in the fuel matrix and are known to react with other elements to form compounds, a realistic description of VFP release must include the effects of VFP chemistry on VFP behavior. The steady-state and transient gas release and swelling subroutine, FASTGRASS, has been modified to include a mechanistic description of the behavior of VFPs (iodine, cesium, CsI, CS2M0O4, and CS2UO4). Phenomena modeled are the chemical reactions between the VFPs, VFP migration through the fuel, and VFP interaction with the noble gases. Calculations were performed with FASTGRASS to describe the release of noble gases, iodine, cesium, and CsI from light water reactor fuel during steady-state and power-ramping conditions. Key issues that are addressed in the analysis are the effects of (a) VFP chemistry, (b) various assumptions concerning mechanisms of VFP migration through solid UO2, (c) fission gas behavior, and (d) an accident scenario on the chemical form of the released iodine and the rate of iodine release from water reactor fuel.