ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
The U.S. Million Person Study of Low-Dose-Rate Health Effects
There is a critical knowledge gap regarding the health consequences of exposure to radiation received gradually over time. While there is a plethora of studies on the risks of adverse outcomes from both acute and high-dose exposures, including the landmark study of atomic bomb survivors, these are not characteristic of the chronic exposure to low-dose radiation encountered in occupational and public settings. In addition, smaller cohorts have limited numbers leading to reduced statistical power.
Jeffrey Rest
Nuclear Technology | Volume 61 | Number 1 | April 1983 | Pages 33-48
Technical Paper | Nuclear Safety | doi.org/10.13182/NT83-A33141
Articles are hosted by Taylor and Francis Online.
As the noble gases play a major role in establishing the interconnection of escape routes from the interior to the exterior of nuclear reactor fuel, a realistic description of the release of volatile fission products (VFPs) must a priori include a realistic description of fission gas release and swelling. In addition, as the VFPs are, in general, quite soluble in the fuel matrix and are known to react with other elements to form compounds, a realistic description of VFP release must include the effects of VFP chemistry on VFP behavior. The steady-state and transient gas release and swelling subroutine, FASTGRASS, has been modified to include a mechanistic description of the behavior of VFPs (iodine, cesium, CsI, CS2M0O4, and CS2UO4). Phenomena modeled are the chemical reactions between the VFPs, VFP migration through the fuel, and VFP interaction with the noble gases. Calculations were performed with FASTGRASS to describe the release of noble gases, iodine, cesium, and CsI from light water reactor fuel during steady-state and power-ramping conditions. Key issues that are addressed in the analysis are the effects of (a) VFP chemistry, (b) various assumptions concerning mechanisms of VFP migration through solid UO2, (c) fission gas behavior, and (d) an accident scenario on the chemical form of the released iodine and the rate of iodine release from water reactor fuel.