ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Chris Wagner: The role of Eden Radioisotopes in the future of nuclear medicine
Chris Wagner has more than 40 years of experience in nuclear medicine, beginning as a clinical practitioner before moving into leadership roles at companies like Mallinckrodt (now Curium) and Nordion. His knowledge of both the clinical and the manufacturing sides of nuclear medicine laid the groundwork for helping to found Eden Radioisotopes, a start-up venture that intends to make diagnostic and therapeutic raw material medical isotopes like molybdenum-99 and lutetium-177.
Karl Heinemann, Ralf Hille, Kurt Jürgen Vogt
Nuclear Technology | Volume 61 | Number 1 | April 1983 | Pages 17-24
Technical Paper | Nuclear Safety | doi.org/10.13182/NT83-A33139
Articles are hosted by Taylor and Francis Online.
The initiation of emergency measures to protect the public after a nuclear accident must be based on immediate measurements of external doses and inhalation doses in inhabited areas. The external radiation exposure from the plume and soil can be determined with dose rate meters. Due to the different biological effects of the individual nuclides, the detection of the inhalation doses calls for nuclide analysis of the air concentration. Radiation exposure calculations of light-water and high-temperature reactors and other nuclear installations proved that only a few nuclides cause the main contribution to the inhalation dose. In the case of reactors, the critical nuclide is 131I. After examining accidents in other nuclear facilities, different nuclides, e.g., strontium and plutonium, may become relevant.