ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
New coolants, new fuels: A new generation of university reactors
Here’s an easy way to make aging U.S. power reactors look relatively youthful: Compare them (average age: 43) with the nation’s university research reactors. The 25 operating today have been licensed for an average of about 58 years.
Mitchel E. Cunningham, Donald D. Lanning
Nuclear Technology | Volume 60 | Number 3 | March 1983 | Pages 420-429
Technical Paper | LWR Control Materials—I and II / Nuclear Fuel | doi.org/10.13182/NT83-A33128
Articles are hosted by Taylor and Francis Online.
Irradiation data collected from test fuel rods that were identically built and operated may be used to define a range of normal performance for a specific fuel rod design. By comparing the data to computer code calculations, it is possible to define the range of applicability of fuel thermal performance computer codes. Data scatter for the centerline temperature from identical rods in several test assemblies decreases from the first power ascension to the third power ascension. Calculated uncertainty bands for the data (i.e., expected variability for the data assuming dimensional tolerances, material property uncertainties, and power uncertainties) are found to be larger than the data scatter. The FRAPCON-2 temperature calculations agree with temperature data from helium-filled rods; however, the code does not match beginning-of-life temperatures from a xenon-filled rod. However, the code results agreed with data obtained from the xenon-filled rod at higher burnup, thus indicating that the code adequately calculates fuel temperatures for fission gas-filled rods later in life.