ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Werner Burkart
Nuclear Technology | Volume 60 | Number 1 | January 1983 | Pages 114-123
Technical Paper | Radioactive Biology and Environment | doi.org/10.13182/NT83-A33107
Articles are hosted by Taylor and Francis Online.
Radon and its short-lived daughters present in indoor air are currently estimated to be responsible for dose equivalents of ∼ 30 mSv/yr (3 rem/yr) to small portions of the respiratory tract. Linear extrapolation from the dose-response values of uranium miners heavily exposed to the same nuclides would suggest that the majority of lung cancers in the nonsmoking population are caused by environmental 222Rn. Such projections cause major concern since both the high linear energy transfer of the alpha radiation involved and the amount of radiation delivered to the critical tissue, which cannot be considered low at environmental exposure levels, speak against beneficial threshold effects in this case. Higher indoor radon concentrations and shifts in the disequilibrium of the short-lived daughters in energy-efficient homes, caused mostly by reduced air exchange rates, will lead to a severalfold increase of lung cancer incidence from radon. Based on the above assumption, ∼100 additional lung cancer death/yr. million will result from an increase in radionuclide concentrations in indoor air. In situations where soil or building materials contain elevated radium levels, living in energy-efficient houses may be as dangerous as heavy smoking. Possible means of reducing indoor radon levels in existing buildings range from diffusion barriers to heat exchangers. The latter devices allow high air exchange rates, which also reduce other critical indoor pollutants. Judged by the standards of the nuclear industry, the costs of reducing exposure to radon and its daughters are very low ($3000 U.S./person. Sv).