ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
PR: American Nuclear Society welcomes Senate confirmation of Ted Garrish as the DOE’s nuclear energy secretary
Washington, D.C. — The American Nuclear Society (ANS) applauds the U.S. Senate's confirmation of Theodore “Ted” Garrish as Assistant Secretary for Nuclear Energy at the U.S. Department of Energy (DOE).
“On behalf of over 11,000 professionals in the fields of nuclear science and technology, the American Nuclear Society congratulates Mr. Garrish on being confirmed by the Senate to once again lead the DOE Office of Nuclear Energy,” said ANS President H.M. "Hash" Hashemian.
Gottfried Class, Klaus Hain
Nuclear Technology | Volume 60 | Number 2 | February 1983 | Pages 314-319
Technical Paper | Radiation Effects and Their Relationship to Geological Repository / Heat Transfer and Fluid Flow | doi.org/10.13182/NT83-A33087
Articles are hosted by Taylor and Francis Online.
A measuring device for measuring the mass flow of nonsteady-state two-phase flows has been developed based on the principle of rotating flow machines. Two versions of the device [true mass flowmeter (TMFM) 2.5 with a measuring range of 2.5 kg/s, and TMFM 50 with a measuring range of 50 kg/s] were used to study the measuring accuracy and the field use of the system. While the measurement errors of TMFM 2.5 are within ±2.2% of the maximum flow, it is possible with the TMFM 50 to reduce the measuring error to ±1.5% (quality x<l%) and ±0.5% (quality ≥ 1%). This implies that the accuracy in measuring two-phase mass flow is practically identical with that obtained in single-phase flow by familiar standard measuring techniques.