ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
Materials in Nuclear Energy Systems (MiNES 2023)
December 10–14, 2023
New Orleans, LA|New Orleans Marriott
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2023
Jul 2023
Latest Journal Issues
Nuclear Science and Engineering
December 2023
Nuclear Technology
Fusion Science and Technology
November 2023
Latest News
Saskatchewan government provides C$80 million for eVinci demonstration
Saskatchewan premier Scott Moe yesterday announced C$80 million (about $59 million) for the Saskatchewan Research Council (SRC) to pursue demonstration of Westinghouse Electric Company’s eVinci microreactor technology.
Graydon L. Yoder, Jr., David G. Morris, Charles B. Mullins, Larry J. Ott
Nuclear Technology | Volume 60 | Number 2 | February 1983 | Pages 304-313
Technical Paper | Radiation Effects and Their Relationship to Geological Repository / Heat Transfer and Fluid Flow | doi.org/10.13182/NT83-A33086
Articles are hosted by Taylor and Francis Online.
A series of steady-state film boiling experiments have been conducted to show the effect of spacer grids on rod bundle heat transfer. Experiments were performed at the Oak Ridge National Laboratory in the Thermal-Hydraulic Test Facility, a pressurized water loop containing a 64-rod bundle, of which 60 rods are electrically heated. The bundle is equipped with detailed thermometry around two grids, which allows grid heat transfer effects to be studied. Rod surface temperature data show a 75 to 150 K temperature difference between measurements upstream and downstream of the grids, while heat transfer coefficients increase across the grids by 20%. Twenty to thirty hydraulic diameters are required for these effects to dissipate.