ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Aaron Barkatt, Alisa Barkatt, William Sousanpour
Nuclear Technology | Volume 60 | Number 2 | February 1983 | Pages 218-227
Technical Paper | Radiation Effects and Their Relationship to Geological Repository / Radioactive Waste Management | doi.org/10.13182/NT83-A33076
Articles are hosted by Taylor and Francis Online.
The effect of the presence of moderate gamma doses (6×104 Gy) on the leaching of glassy and ceramic waste forms has been investigated. It is found that the leach rates are enhanced by <50% in the case of alumina-free glasses, by a factor of 3 to 4 in the case of glasses that contain 5 to 8% Al2O3, and by a factor of 20 to 100 in the case of SYNROC-D (20% A32O3). Buffer studies show the enhancement to be almost entirely due to a decrease in pH, and the composition dependence of the enhancement factor is interpreted in terms of the sharp rise in both alumina solubility and leach rates of alumina-containing materials with increasing acidity. The radiation-induced pH decrease is partially due to the formation of nitric acid but formic and oxalic acid are also observed to be produced. The concentration of carboxylic acids is as large as that of HNO3. A mechanism is proposed that assumes HNO3 is produced due to the oxidation of dissolved nitrogen, while formic and oxalic acids result from the reduction of CO2 by hydrated electrons. The mechanism is supported by scavenging studies with 2-propanol. The production of carboxylic acids increases the significance of radiation effects on waste form leaching because of the presence of CO2 in subsurface water and because of the tendency of these acids to form complexes, further enhancing the leach rates. Organic acid formation may be particularly important in the case of groundwater, which usually contains significant levels of dissolved CO2 and carbonates.