ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
R. A. Van Konynenburg, M. W. Guinan
Nuclear Technology | Volume 60 | Number 2 | February 1983 | Pages 206-217
Technical Paper | Radiation Effects and Their Relationship to Geological Repository / Radioactive Waste Management | doi.org/10.13182/NT83-A33075
Articles are hosted by Taylor and Francis Online.
SYNROC-D is a ceramic material proposed as a waste form for defense high-level nuclear waste. During the first million years of storage, it would be subjected to ∼8 × 1024 alpha decay/m3 of SYNROC-D and a total ionization dose of ∼1 × 1011 rad. There are several methods of simulating the resulting radiation effects, including external bombardment using gamma rays, electrons, light ions, heavy ions, or neutrons, and internal bombardment using short half-life actinide doping to bring about internal alpha decay, or doping with uranium, boron, or lithium, coupled with neutron irradiation, to induce internal fissions or (n, α) reactions. Previous work by others using several of these methods as well as data from natural minerals has been compared on a displacements per atom basis. The results show that dose rate effects are not important in determining the swelling and metamictization of the perovskite and zirconolite phases over a wide range of dose rate for low temperatures and doses of 2 to 3 × 1025 alpha/m3 of each phase, corresponding to expected million year doses in SYNROC-D. Based on this observation and a consideration of the basic processes involved, we argue that the million-year radiation damage expected in SYNROC-D can be adequately simulated in a few months by doping samples with 238Pu, and simultaneously carrying out external gamma-ray bombardment. The 238Pu will undergo alpha decay, producing the same type of damage in the same phases as would long-term actinide decay in actual waste. The gamma irradiation will simulate the ionization dose, which would result primarily from fission product decay in actual waste. SYNROC-D samples have been fabricated and characterized using cerium and uranium, respectively, as stand-ins for plutonium. These samples show good properties, and 239Pu doping experiments are expected to take place soon to determine if plutonium will dissolve properly in SYNROC-D.