ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Mirion announces appointments
Mirion Technologies has announced three senior leadership appointments designed to support its global nuclear and medical businesses while advancing a company-wide digital and AI strategy. The leadership changes come as Mirion seeks to advance innovation and maintain strong performance in nuclear energy, radiation safety, and medical applications.
John C. Wagner, Charlotta E. Sanders
Nuclear Technology | Volume 139 | Number 2 | August 2002 | Pages 91-126
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT02-A3307
Articles are hosted by Taylor and Francis Online.
The effect of fixed absorbers on the reactivity of pressurized water reactor (PWR) spent nuclear fuel (SNF) in support of burnup-credit criticality safety analyses is examined. A fuel assembly burned in conjunction with fixed absorbers may have a higher reactivity for a given burnup than an assembly that has not used fixed absorbers. As a result, guidance on burnup credit, issued by the U.S. Nuclear Regulatory Commission's Spent Fuel Project Office, recommends restricting the use of burnup credit to assemblies that have not used burnable absorbers. This recommendation eliminates a large portion of the currently discharged SNF from loading in burnup credit casks and thus severely limits the practical usefulness of burnup credit. Therefore, data are needed to support the extension of burnup credit to additional SNF. This research investigates the effect of various fixed absorbers, including integral burnable absorbers, burnable poison rods, control rods, and axial power shaping rods, on the reactivity of PWR SNF. Trends in reactivity with relevant parameters (e.g., initial fuel enrichment, burnup and absorber type, exposure, and design) are established, and anticipated reactivity effects are quantified. Where appropriate, recommendations are offered for addressing the reactivity effects of the fixed absorbers in burnup-credit safety analyses.