ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Proposed rule for more flexible licensing under Part 53 is open for comment
The Nuclear Regulatory Commission has published a proposed rule that has been almost five years in the making: Risk-Informed, Technology-Inclusive Regulatory Framework for Advanced Reactors. The rule, which by law must take its final form before the end of 2027, would let the NRC and license applicants use technology-inclusive approaches and risk-informed, performance-based techniques to effectively license any nuclear technology. This is a departure from two licensing options with light water reactor–specific regulatory requirements that applicants can already choose.
Klaus Rehme
Nuclear Technology | Volume 59 | Number 1 | October 1982 | Pages 148-159
Technical Paper | Heat Transfer and Fluid Flow | doi.org/10.13182/NT82-A33060
Articles are hosted by Taylor and Francis Online.
An experimental investigation was performed to obtain detailed information on the velocity and turbulence distributions in a parallel turbulent flow through an asymmetric rod bundle. The rod bundle consisted of four parallel rods arranged asymmetrically in a rectangular channel. The pitch-to-diameter (P/D) ratio of the rods was P/D = 1.072. Experimental results were obtained in two wall subchannels with wall-to-diameter (W/D) ratios of W/D = 1.096 and 1.048, respectively. The experimental results showed high anisotropy of the momentum transport, particularly in the gaps of the rod bundle. Comparisons between the measured wall shear stresses and data computed by the VELASCO code show considerable differences, particularly for the wall subchannel with W/D = 1.048.