ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Jean-Louis Bernard, Georges S. Slama
Nuclear Technology | Volume 59 | Number 1 | October 1982 | Pages 136-147
Technical Paper | Material | doi.org/10.13182/NT82-A33059
Articles are hosted by Taylor and Francis Online.
The need exists to define a fatigue crack growth design curve in an air environment for austenitic stainless steels in the temperature range of 300°C, which is the operating temperature range of pressurized water reactors. In the present study, elements to determine such a curve in a deterministic way are developed. In particular, effects of R ratio (Kmin/Kmax) are reviewed, and high R ratio tests, which were lacking, have been performed. To take into account R ratio effects, a relationship giving realistic predictions in accordance with high R ratio experiments is determined. A design curve, defined from a large compilation of results from several laboratories, allows a conservative calculation of all known fatigue crack growth tests on austenitic stainless steels in the temperature range of 300°C.