ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
Antonino Romano, Neil E. Todreas
Nuclear Technology | Volume 139 | Number 1 | July 2002 | Pages 61-71
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT02-A3304
Articles are hosted by Taylor and Francis Online.
Cylindrical fuel pins with wires are the design of choice for tightly packed fuel arrays. However, it is important to investigate novel fuel configurations in order to increase the thermal margins. Hence, new fuel designs have been studied for the epithermal option of the light water-cooled IRIS core. These designs are also of potential use in other tightly packed, epithermal advanced core designs.First, design equations have been used to determine number, height, and size of the principal features (clad, gap, fuel cross-sectional area) of the novel fuel configurations under investigation. Then, performance indices have been introduced to relate fuel geometrical characteristics to selected thermal-hydraulic parameters, such as pressure drop, critical heat flux (CHF), fuel centerline temperature, and clad surface temperature and stress distribution. Finally, variously shaped fuel configurations, including cylindrical, triangular, square, and hexagonal, have been ranked according to the performance indicators.The hexagonal fuel pins, both twisted and straight, proved to be good solutions for the epithermal tight core of the light water-cooled IRIS reactor, with performances comparable to those of the cylindrical fuel with wires. In particular, for water-to-fuel ratios ~0.33, the twisted hexagonal shape is the preferable design with a reduction of the total pressure drop by 16% and an increase of the CHF margin by 200%, compared to the traditional cylindrical pins with grids. Furthermore, the straight hexagonal shape allows flatter subchannel velocity profiles, wall shear stress, and wall temperature distributions. However, geometric constraints unfortunately do not allow application of the twisted hexagonal shape for smaller water-to-fuel ratios, which is a design regime of more favorable epithermal neutronics performance. In this regime, the cylindrical pins with wires are the solution of choice.