ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
New coolants, new fuels: A new generation of university reactors
Here’s an easy way to make aging U.S. power reactors look relatively youthful: Compare them (average age: 43) with the nation’s university research reactors. The 25 operating today have been licensed for an average of about 58 years.
Richard H. Bossi, Alan H. Robinson, John P. Barton+
Nuclear Technology | Volume 59 | Number 2 | November 1982 | Pages 363-374
Technical Paper | Technique | doi.org/10.13182/NT82-A33039
Articles are hosted by Taylor and Francis Online.
A system has been developed to perform neutron radiographic analysis of dynamic events having a duration of several milliseconds. The system has been operated in the range of 2000 to 10 000 frame /s. Synchronization has provided high-speed motion neutron radiographs for evaluation of the firing cycles of 7.62-mm munition rounds within a thick steel rifle barrel. The system has also been used to demonstrate its ability to produce neutron radiographic movies of two-phase flow. The equipment includes a TRIGA reactor capable of pulsing to a peak power of 3000 MW, a neutron beam collimator, a scintillator neutron conversion screen coupled to an image intensifier, and a 16-mm high-speed movie camera. The peak neutron flux incident at the object position is ∼4 X 1011 n/cm2.s with a pulse, full-width at half-maximum, of 9 ms. Modulation transfer function techniques have been used to assist optimization of the system performance. Special studies have been performed on the scintillator conversion screens and on the effects of statistical limitations on information availability.