ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Norman H. Macmillan, George I. Dooher, Robert G. Naum
Nuclear Technology | Volume 59 | Number 2 | November 1982 | Pages 327-343
Technical Paper | Material | doi.org/10.13182/NT82-A33036
Articles are hosted by Taylor and Francis Online.
A three-part experimental study has been carried out to determine the effects of exposure to the spent nuclear fuel pool environment on two composite neutron-absorbing materials—one made in plate form and consisting of ∼72 wt% of B4C particles bonded together by ∼28 wt% of a phenol-formaldehyde polymer, and the other made in sheet form and consisting of ∼62 wt% of B4C particles bonded to both sides of a woven glass-fiber reinforcement by ∼19 wt% of the same polymer. The results of the mechanical and physical properties tests show that the two materials degrade somewhat differently in the spent fuel pool environment. In the case of the plate material, radiation-induced expansion and embrittlement of the polymer lead at doses ∼109 Gy to ∼1% linear expansion, with a concomitant ∼60% reduction in strength and stiffness and a somewhat enhanced susceptibility to contact damage. In the case of the sheet material, however, the presence of the relatively radiation damage-resistant glass-fiber reinforcement prevents such degradation of the polymer from causing either in-plane dimensional changes or loss of stiffness. Nevertheless, at doses ≳108 Gy, this latter material loses ∼60% of its ultimate tensile strength and becomes markedly more susceptible to the loss of B4C through contact damage. Parallel gas generation tests show that radiolytic decomposition of the polymer in air leads to evolution of H2 and a lesser amount of CO2 at rates of 0.4 to 0.5 X 10-7 cm3 [at normal temperature and pressure (NTP)]g-1 (of composite) Gy-1 and 0.2 to 0.4 X 10-7 cm3 (at NTP) g-1 (of composite) Gy-1 in the cases of the plate and sheet materials, respectively. Finally, the leachability test shows that about two-thirds of the 67 X 10-3% of the total boron content that is present on the surface of the B4C particles in the plate material as B2O3 is leached out during exposure to ∼3 X 108 Gy in deionized water at 308 K over a period of ∼ 100 days.