ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Heinz Bachhuber, Kurt Bunzl, Wolfgang Schimmack, Ingbert Gans
Nuclear Technology | Volume 59 | Number 2 | November 1982 | Pages 291-301
Technical Paper | Radioactive Waste Management | doi.org/10.13182/NT82-A33032
Articles are hosted by Taylor and Francis Online.
Rates of migration, retardation factors, and distribution coefficients of 137Cs and 90Sr were determined in the various horizons of three typical soils (podsol, ranker, and brown soil) by employing batch procedures, column experiments, and evaluating the measured distribution of these radionuclides in the field as a result of their deposition from worldwide fallout. To obtain the distribution coefficients of the radionuclides for each soil horizon from the column experiments, the radionuclide distribution in the undisturbed soil monoliths (1 m long, 30-cm diam) was determined from the outside by a scanner technique after various times. The columns were irrigated with rainwater using the same quantities as observed at the site of sampling. Tritium labeled rainwater was used to obtain the hydrodynamic properties of the soil columns (pore water velocity, dispersion coefficient, and volumetric moisture content). Assuming that the fallout investigations yielded the most realistic results, the observations suggest that column experiments performed in the laboratory under approximately natural conditions can be used to obtain fairly realistic information about the migration of 137Cs and 90Sr in these soils. The use of distribution coefficients from batch methods for the prediction of radionuclide movement, on the other hand, can be misleading, especially in soil horizons rich in organic matter.