ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Tsutomu Otsuka, Koichi Sekimizu, Yasunori Sakamoto, Nobuhiko Netsu, Akio Yanagisawa, Kiyoshi Niki, Atsuro Kawamura
Nuclear Technology | Volume 59 | Number 2 | November 1982 | Pages 199-211
Technical Paper | Fission Reactor | doi.org/10.13182/NT82-A33023
Articles are hosted by Taylor and Francis Online.
The Reactor Management System (RMS), an on-line system with a minicomputer, has been in operation at a boiling water reactor (BWR) nuclear power plant since 1977. The objectives of this system are to perform detailed monitoring and prediction of the core status and to make reactor operation more efficient, simpler, and easier. One of the features of the system is that the RMS utilizes process computer calculated data (such as power distribution and exposure distribution in the core) transferred through the data link, as well as the plant data (such as local power range monitor readings and control rod positions) transferred through the process input/output system. Based on operational experience at the BWR plant, calculation models have been improved to achieve higher accuracy, and new functions have been added to fulfill the operator’s demands. The system has now become a useful tool for the operator. For instance, the power level prediction function has become essential for plant operation at the control rod pattern change.