ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
New coolants, new fuels: A new generation of university reactors
Here’s an easy way to make aging U.S. power reactors look relatively youthful: Compare them (average age: 43) with the nation’s university research reactors. The 25 operating today have been licensed for an average of about 58 years.
Hermann J. Möckel, Rainer H. Köster
Nuclear Technology | Volume 59 | Number 3 | December 1982 | Pages 494-497
Technical Paper | The Backfill as an Engineered Barrier for Radioactive Waste Management / Radioactive Waste Management | doi.org/10.13182/NT82-A33007
Articles are hosted by Taylor and Francis Online.
Portland cement stone samples simulating solidified active waste were 60Co-gamma-irradiated with doses up to 108 rad. The radiolytically produced gases were determined using a gas chromatographic technique. Various additives chemically comparable to actual low- and intermediate-level wastes were incorporated in the cement mixtures. Also the influence of the presence of oxygen during the irradiation was investigated. In no case could or NOx (from the decomposition of nitrate) be detected. In nitrate-free samples, only H2 is produced. The H2 yield ranges between 3 and 8 ml of H2 per kilogram of cement stone and per megarad radiation applied. It depends on the water content and the aging time of the samples; an influence of the concrete fluidizer content was not observed. The presence of nitrate in the samples gives rise to the production of O2 besides H2 and an overall decrease of the gas yield.