ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
Hermann J. Möckel, Rainer H. Köster
Nuclear Technology | Volume 59 | Number 3 | December 1982 | Pages 494-497
Technical Paper | The Backfill as an Engineered Barrier for Radioactive Waste Management / Radioactive Waste Management | doi.org/10.13182/NT82-A33007
Articles are hosted by Taylor and Francis Online.
Portland cement stone samples simulating solidified active waste were 60Co-gamma-irradiated with doses up to 108 rad. The radiolytically produced gases were determined using a gas chromatographic technique. Various additives chemically comparable to actual low- and intermediate-level wastes were incorporated in the cement mixtures. Also the influence of the presence of oxygen during the irradiation was investigated. In no case could or NOx (from the decomposition of nitrate) be detected. In nitrate-free samples, only H2 is produced. The H2 yield ranges between 3 and 8 ml of H2 per kilogram of cement stone and per megarad radiation applied. It depends on the water content and the aging time of the samples; an influence of the concrete fluidizer content was not observed. The presence of nitrate in the samples gives rise to the production of O2 besides H2 and an overall decrease of the gas yield.