ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Nuclear News 40 Under 40 discuss the future of nuclear
Seven members of the inaugural Nuclear News 40 Under 40 came together on March 4 to discuss the current state of nuclear energy and what the future might hold for science, industry, and the public in terms of nuclear development.
To hear more insights from this talented group of young professionals, watch the “40 Under 40 Roundtable: Perspectives from Nuclear’s Rising Stars” on the ANS website.
Edgar Kiefhaber
Nuclear Technology | Volume 59 | Number 3 | December 1982 | Pages 483-493
Technical Paper | The Backfill as an Engineered Barrier for Radioactive Waste Management / Fission Reactor | doi.org/10.13182/NT82-A33006
Articles are hosted by Taylor and Francis Online.
Steam ingress into a gas-cooled fast reactor (GCFR) core may lead to reactivity effects that are undesirable from the point of view of reactor safety. Unfortunately, the amount of reactivity increase caused by a certain steam concentration is usually subject to considerable uncertainty, as has become evident by occasional comparisons between various laboratories for specific examples. Therefore, some time ago, a series of intentionally simple benchmarks were proposed in order to study in a systematic way the calculational uncertainty of the steam ingress reactivity arising essentially from differences in the nuclear data basis used at various laboratories. The analysis of corresponding results provided by laboratories in France, Germany, Japan, Switzerland, and the United States reveals that there still exist appreciable deviations in the predicted steam ingress reactivity effect. Due to the extensive cancellation of positive and negative contributions to this reactivity effect, the resulting net value is extremely sensitive to deviations in the nuclear data and calculational methods. Typical discrepancies for the calculated steam ingress reactivity observed within the framework of an international intercomparison are described, leading to the conclusion that further improvements in the nuclear data basis are desirable and the development and application of fairly refined calculational methods is mandatory to be able to predict the corresponding effect with sufficient reliability for related power reactor designs. In addition, measurements of equivalent reactivity effects should be continued in different critical assemblies to provide a broader experimental basis for the verification of the calculational tools. If further analytical work could be pursued, the Argonne National Laboratory experiment on the GCFR Phase II Steam Entry Effect might be the appropriate object to be studied and analyzed in detail, e.g., by a similar intercomparison effort, especially if the discrepancies existing at present in nuclear data bases could be removed or diminished to a tolerable level. Reasonable progress in these areas would increase the confidence attributed to calculations of the reactivity effect of the assumed entry of hydrogeneous material into the core of a fast power reactor.