ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Edgar Kiefhaber
Nuclear Technology | Volume 59 | Number 3 | December 1982 | Pages 483-493
Technical Paper | The Backfill as an Engineered Barrier for Radioactive Waste Management / Fission Reactor | doi.org/10.13182/NT82-A33006
Articles are hosted by Taylor and Francis Online.
Steam ingress into a gas-cooled fast reactor (GCFR) core may lead to reactivity effects that are undesirable from the point of view of reactor safety. Unfortunately, the amount of reactivity increase caused by a certain steam concentration is usually subject to considerable uncertainty, as has become evident by occasional comparisons between various laboratories for specific examples. Therefore, some time ago, a series of intentionally simple benchmarks were proposed in order to study in a systematic way the calculational uncertainty of the steam ingress reactivity arising essentially from differences in the nuclear data basis used at various laboratories. The analysis of corresponding results provided by laboratories in France, Germany, Japan, Switzerland, and the United States reveals that there still exist appreciable deviations in the predicted steam ingress reactivity effect. Due to the extensive cancellation of positive and negative contributions to this reactivity effect, the resulting net value is extremely sensitive to deviations in the nuclear data and calculational methods. Typical discrepancies for the calculated steam ingress reactivity observed within the framework of an international intercomparison are described, leading to the conclusion that further improvements in the nuclear data basis are desirable and the development and application of fairly refined calculational methods is mandatory to be able to predict the corresponding effect with sufficient reliability for related power reactor designs. In addition, measurements of equivalent reactivity effects should be continued in different critical assemblies to provide a broader experimental basis for the verification of the calculational tools. If further analytical work could be pursued, the Argonne National Laboratory experiment on the GCFR Phase II Steam Entry Effect might be the appropriate object to be studied and analyzed in detail, e.g., by a similar intercomparison effort, especially if the discrepancies existing at present in nuclear data bases could be removed or diminished to a tolerable level. Reasonable progress in these areas would increase the confidence attributed to calculations of the reactivity effect of the assumed entry of hydrogeneous material into the core of a fast power reactor.