ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Alan P. Main, Bryce L. Shriver
Nuclear Technology | Volume 59 | Number 3 | December 1982 | Pages 456-462
Technical PaperTechnical Paper | The Backfill as an Engineered Barrier for Radioactive Waste Management / Material | doi.org/10.13182/NT82-A33003
Articles are hosted by Taylor and Francis Online.
A model for predicting the annealing response of A553-B weld materials has been developed. This model assumes that the irradiation-induced shifts in the nil ductility transition temperature (ΔNDTT) and Charpy upper shelf energy (ΔUSE) are a result of the introduction of three types of defects into the alloy. The recovery of ΔNDTT and ΔUSE depends on the concentration of each defect remaining after the annealing treatment. The three defect types, including their diffusion constants, are assumed to be the same for all A533-B welds. However, the contribution of each defect type to ΔNDTT and ΔUSE depends on the chemical composition of the material and possibly the neutron fluence. Copper, nickel, manganese, and chromium were found to correlate with ΔNDTT, while sulfur and phosphorus appeared to correlate with ΔUSE. Once the relative contribution of each defect type is known, the recovery of ΔNDTT and ΔUSE is predicted based on diffusion calculations. Both the annealing temperature and time are accounted for in the calculations. The final model was compared with experimental data on three materials tested by Westinghouse Electric Corporation and two materials tested by the Naval Research Laboratory. The model accurately predicted the recovery of ΔNDTT for all five materials annealed at 343°C (650°F) to 454°C (850°F) for 24 to 336 h. The predicted recovery of ΔUSE was not as accurate as that of ΔNDTT.