ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
J. Russell Hawthorne
Nuclear Technology | Volume 59 | Number 3 | December 1982 | Pages 440-455
Technical PaperTechnical Paper | The Backfill as an Engineered Barrier for Radioactive Waste Management / Material | doi.org/10.13182/NT82-A33002
Articles are hosted by Taylor and Francis Online.
The effects of three levels of copper content and phosphorus content and two levels of sulfur content on radiation sensitivity and postirradiation heat treatment response were explored for a reactor pressure vessel steel, Type A302-B. Test plates for the investigation were produced from 182-kg (400-lb) laboratory melts. The contributions of individual elements were assessed from Charpy-V (CV) notch ductility changes with 288°C (550°F) irradiation and with a 343°C (650°F), 168-h postirradiation heat treatment. Limited studies of properties recovery by postirradiation 399°C (750°F) heat treatment were also made. Radiation embrittlement sensitivity, as shown by CV transition temperature elevation and CV upper shelf reduction, generally increased with increased copper and phosphorus content and with decreased sulfur content. Certain ranges of phosphorus and copper content were found to be more critical than others. Response to 343°C (650°F) postirradiation heat treatment, as evidenced by transition temperature recovery in degrees Celsius, appeared to be independent of copper, phosphorus, and sulfur content for the ranges investigated. Response to heat treatment also appeared to be independent of the magnitude of the prior transition temperature elevation by irradiation. On the other hand, a dependence of percentage recovery on impurity element content was observed. A dependence of upper shelf recovery on copper content was also found. Six of the eight plate compositions exhibited full upper shelf recovery but only small transition temperature recovery after 343°C (650°F) heat treatment.