ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Felix Schreiner, Sherman Fried, Arnold M. Friedman
Nuclear Technology | Volume 59 | Number 3 | December 1982 | Pages 429-438
Technical Paper | The Backfill as an Engineered Barrier for Radioactive Waste Management / Radioactive Waste Management | doi.org/10.13182/NT82-A33001
Articles are hosted by Taylor and Francis Online.
The mobility of cationic neptunium, plutonium, americium, and sodium, and of the anionic species pertechnetate, , has been determined in samples of various sediments from the ocean floor, and in bentonite and hectorite clay. The experiments were conducted at ambient temperatures (298 ± 5 K), and the periods of observation ranged from several hours to ten months. All tests were carried out under static conditions permitting only molecular diffusion of the ionic species. Results indicate very low mobilities for the transuranium elements plutonium and americium, for which the upper limit of the effective diffusion coefficient is <10−10 cm2 · s−1. Sodium, neptunium, and were found to have higher mobilities characterized by values for the effective diffusion coefficient of 3 × 10−6, 1.8 × 10−8, and 3.2 × 10−6 cm2 · s−1, respectively. Some implications of the measured results for the assessment of barrier effectiveness are discussed.