ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
New coolants, new fuels: A new generation of university reactors
Here’s an easy way to make aging U.S. power reactors look relatively youthful: Compare them (average age: 43) with the nation’s university research reactors. The 25 operating today have been licensed for an average of about 58 years.
Felix Schreiner, Sherman Fried, Arnold M. Friedman
Nuclear Technology | Volume 59 | Number 3 | December 1982 | Pages 429-438
Technical Paper | The Backfill as an Engineered Barrier for Radioactive Waste Management / Radioactive Waste Management | doi.org/10.13182/NT82-A33001
Articles are hosted by Taylor and Francis Online.
The mobility of cationic neptunium, plutonium, americium, and sodium, and of the anionic species pertechnetate, , has been determined in samples of various sediments from the ocean floor, and in bentonite and hectorite clay. The experiments were conducted at ambient temperatures (298 ± 5 K), and the periods of observation ranged from several hours to ten months. All tests were carried out under static conditions permitting only molecular diffusion of the ionic species. Results indicate very low mobilities for the transuranium elements plutonium and americium, for which the upper limit of the effective diffusion coefficient is <10−10 cm2 · s−1. Sodium, neptunium, and were found to have higher mobilities characterized by values for the effective diffusion coefficient of 3 × 10−6, 1.8 × 10−8, and 3.2 × 10−6 cm2 · s−1, respectively. Some implications of the measured results for the assessment of barrier effectiveness are discussed.