ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
Jeff Place on INPO’s strategy for industry growth
As executive vice president for industry strategy at the Institute of Nuclear Power Operations, Jeff Place leads INPO’s industry-facing work, engaging directly with chief nuclear officers.
Toshiaki Ohe, Akira Nakaoka, Shinji Takagi
Nuclear Technology | Volume 58 | Number 3 | September 1982 | Pages 521-529
Technical Paper | Radioactive Waste Management | doi.org/10.13182/NT82-A32985
Articles are hosted by Taylor and Francis Online.
Received December 28, 1981 Accepted for Publication March 23, 1982 The adsorption of gaseous iodine, I2and CH3I, in typical rocks of Japanese ground formation such as granite, tuff and sandstone is described. Adsorption coefficients (Ka) of crushed rock samples were determined by a column technique under dry or wet vapor conditions. The adsorption isotherm was identified as the Langmuir- or Henry-type equation. The Ka value of I2 varied over two orders of magnitude and was 102 to 103 times greater than that of CH3I. The results suggested that the Ka values of I2 and CH3I were proportional to the specific surface areas of crushed rocks and the order of the coefficients was: granite < tuff < sandstone at the same grain size (300-µm diam). The specific surface area of the permeable ground formation was estimated by the Kozeny-Carman equation, consequently, the smallest value of Ka of the rocks was one-tenth to one-thirtieth less than that of crushed rock.