ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
Geoffrey G. Eichholz, Barry G. Wahlig, Gregory F. Powell, T. F. Craft
Nuclear Technology | Volume 58 | Number 3 | September 1982 | Pages 511-520
Technical Paper | Radioactive Waste Management | doi.org/10.13182/NT82-A32984
Articles are hosted by Taylor and Francis Online.
Received August 24, 1981 Accepted for Publication March 18, 1982 The role of suspended particles as carriers of dissolved nuclides from high-level radioactive waste repositories has been investigated. Depending on the concentrations of suspended particles and the nature of the invading water, it has been found that cationic nuclides may be competitively adsorbed on suspended clay particles, the partitioning being largely determined by pH, temperature, and comparative surface areas of particulates and surrounding rocks. Column tests with activated particles have been conducted and showed that the clay particles pass readily through porous mineral columns and are increasingly retained if salinity is increased. Retention in basalt columns is stronger in the presence of high concentrations of sodium and calcium ions and has been explained in terms of van der Waals forces. The range of particulate migration then depends on the condition of the rock surfaces, the persistence of a clay coating, and the total dissolved ion concentration. For adsorb-able waste ions, this may represent a pathway comparable in significance to ion-exchange-controlled migration. For some bed materials, the particulate movement displayed a prompt and a delayed component; the nature of the delay mechanism is not fully understood at present.