ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Empowering the next generation: ANS’s newest book focuses on careers in nuclear energy
A new career guide for the nuclear energy industry is now available: The Nuclear Empowered Workforce by Earnestine Johnson. Drawing on more than 30 years of experience across 16 nuclear facilities, Johnson offers a practical, insightful look into some of the many career paths available in commercial nuclear power. To mark the release, Johnson sat down with Nuclear News for a wide-ranging conversation about her career, her motivation for writing the book, and her advice for the next generation of nuclear professionals.
When Johnson began her career at engineering services company Stone & Webster, she entered a field still reeling from the effects of the Three Mile Island incident in 1979, nearly 15 years earlier. Her hiring cohort was the first group of new engineering graduates the company had brought on since TMI, a reflection of the industry-wide pause in nuclear construction. Her first long-term assignment—at the Millstone site in Waterford, Conn., helping resolve design issues stemming from TMI—marked the beginning of a long and varied career that spanned positions across the country.
Antonio Villalobos, A. R. Wazzan, D. Okrent
Nuclear Technology | Volume 58 | Number 3 | September 1982 | Pages 492-510
Technical Paper | Nuclear Fuel | doi.org/10.13182/NT82-A32983
Articles are hosted by Taylor and Francis Online.
Received December 14, 1981 Accepted for Publication March 18, 1982 A model to predict fission gas behavior in irradiated uranium dioxide fuel during the steady-state operation of a nuclear reactor is developed. The basic physical phenomena encountered in analyzing the disposition of fission gas have been retained, but in a simplified form for ease of calculation. The analysis includes treatment of in-tragranular, grain face, and grain edge gas, and release to open spaces. The code is utilized to obtain comparison with experimental data and to perform fuel behavior studies. The sensitivity studies indicate the importance of grain face and grain edge bubble treatments in modeling fission gas. It is found that representation of release in different sections of the fuel pin is possible in a simple way by assuming evenly spaced bubbles on the edge, and that grain edge bubble interlinkage is a necessary condition for release to the open spaces. The sensitivity studies show that fission gas swelling is mainly due to grain edge bubbles. Grain face bubbles, although large in size, are few in number and contribute little to swelling. Intragranular swelling is intermediate between these two values. The code is successfully used to analyze the Westinghouse fission gas release data from the Zorita, Spain, light water reactor and data from the U.K. reactor DIDO. This success in modeling experiments suggests that the present code can be used in predicting fuel element performance, which is necessary in nuclear fuel design, safety analysis, and interpretation of experimental data on fuel element behavior.