ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
Robert C. Doerner, Theodore H. Bauer,Charles L. Fink, William F. Murphy, Arthur E. Wright
Nuclear Technology | Volume 58 | Number 3 | September 1982 | Pages 465-482
Technical Paper | Nuclear Fuel | doi.org/10.13182/NT82-A32981
Articles are hosted by Taylor and Francis Online.
Received September 28, 1981 Accepted for Publication February 26, 1982 Issues related to the potential for a large-scale sodium vapor explosion in a carbide-fueled liquid-metal fast breeder reactor accident were addressed in the AX1 test in the Transient Reactor Test Facility. Test design and operating conditions were selected to meet the spontaneous nucleation temperature criterion for an energetic, explosive molten fuel-sodium interaction. Although that criterion appears to have been achieved, thermal and mechanical analyses of the test data indicate that the interaction was not especially energetic. Comparison to similar tests on oxide fuel indicates that, under the particular test conditions employed, the conversion of thermal energy to mechanical work is similar for the two fuel types. Transient bulk fuel motion was extensive, with axial fuel motion generally coinciding in time and space with the ejection of the coolant from the original fuel region. Posttest examination of the hardware revealed that nearly all of the fuel had mixed on a microscopic scale with the stainless steel cladding. Relative proportions of iron, chromium, and nickel in the mixture varied widely. The melting point of the mixture was apparently much lower than that of stainless steel.