ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Canada clears Darlington to produce Lu-177 and Y-90
The Canadian Nuclear Safety Commission has amended Ontario Power Generation’s power reactor operating license for Darlington nuclear power plant to authorize the production of the medical radioisotopes lutetium-177 and yttrium-90.
Robert C. Doerner, Theodore H. Bauer,Charles L. Fink, William F. Murphy, Arthur E. Wright
Nuclear Technology | Volume 58 | Number 3 | September 1982 | Pages 465-482
Technical Paper | Nuclear Fuel | doi.org/10.13182/NT82-A32981
Articles are hosted by Taylor and Francis Online.
Received September 28, 1981 Accepted for Publication February 26, 1982 Issues related to the potential for a large-scale sodium vapor explosion in a carbide-fueled liquid-metal fast breeder reactor accident were addressed in the AX1 test in the Transient Reactor Test Facility. Test design and operating conditions were selected to meet the spontaneous nucleation temperature criterion for an energetic, explosive molten fuel-sodium interaction. Although that criterion appears to have been achieved, thermal and mechanical analyses of the test data indicate that the interaction was not especially energetic. Comparison to similar tests on oxide fuel indicates that, under the particular test conditions employed, the conversion of thermal energy to mechanical work is similar for the two fuel types. Transient bulk fuel motion was extensive, with axial fuel motion generally coinciding in time and space with the ejection of the coolant from the original fuel region. Posttest examination of the hardware revealed that nearly all of the fuel had mixed on a microscopic scale with the stainless steel cladding. Relative proportions of iron, chromium, and nickel in the mixture varied widely. The melting point of the mixture was apparently much lower than that of stainless steel.