ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Mirion announces appointments
Mirion Technologies has announced three senior leadership appointments designed to support its global nuclear and medical businesses while advancing a company-wide digital and AI strategy. The leadership changes come as Mirion seeks to advance innovation and maintain strong performance in nuclear energy, radiation safety, and medical applications.
Robert C. Doerner, Theodore H. Bauer,Charles L. Fink, William F. Murphy, Arthur E. Wright
Nuclear Technology | Volume 58 | Number 3 | September 1982 | Pages 465-482
Technical Paper | Nuclear Fuel | doi.org/10.13182/NT82-A32981
Articles are hosted by Taylor and Francis Online.
Received September 28, 1981 Accepted for Publication February 26, 1982 Issues related to the potential for a large-scale sodium vapor explosion in a carbide-fueled liquid-metal fast breeder reactor accident were addressed in the AX1 test in the Transient Reactor Test Facility. Test design and operating conditions were selected to meet the spontaneous nucleation temperature criterion for an energetic, explosive molten fuel-sodium interaction. Although that criterion appears to have been achieved, thermal and mechanical analyses of the test data indicate that the interaction was not especially energetic. Comparison to similar tests on oxide fuel indicates that, under the particular test conditions employed, the conversion of thermal energy to mechanical work is similar for the two fuel types. Transient bulk fuel motion was extensive, with axial fuel motion generally coinciding in time and space with the ejection of the coolant from the original fuel region. Posttest examination of the hardware revealed that nearly all of the fuel had mixed on a microscopic scale with the stainless steel cladding. Relative proportions of iron, chromium, and nickel in the mixture varied widely. The melting point of the mixture was apparently much lower than that of stainless steel.