ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Dragonfly, a Pu-fueled drone heading to Titan, gets key NASA approval
Curiosity landed on Mars sporting a radioisotope thermoelectric generator (RTG) in 2012, and a second NASA rover, Perseverance, landed in 2021. Both are still rolling across the red planet in the name of science. Another exploratory craft with a similar plutonium-238–fueled RTG but a very different mission—to fly between multiple test sites on Titan, Saturn’s largest moon—recently got one step closer to deployment.
On April 25, NASA and the Johns Hopkins University Applied Physics Laboratory (APL) announced that the Dragonfly mission to Saturn’s icy moon passed its critical design review. “Passing this mission milestone means that Dragonfly’s mission design, fabrication, integration, and test plans are all approved, and the mission can now turn its attention to the construction of the spacecraft itself,” according to NASA.
Werner Scholtyssek, Gerhard Heusener, Fritz Hofmann, Helmut Plitz
Nuclear Technology | Volume 139 | Number 1 | July 2002 | Pages 10-20
Technical Paper | doi.org/10.13182/NT02-A3298
Articles are hosted by Taylor and Francis Online.
The research and development program at the Forschungszentrum Karlsruhe, performed within the Program Nuclear Safety Research, is centered around phenomena and processes that could possibly endanger the containment integrity of a large pressurized water reactor after a severe accident. The program includes three activities.The first activity is in-vessel steam explosion. Premixing phenomena are studied in the QUEOS and PREMIX test series. The efficiency of energy conversion is the subject of ECO tests. The BERDA experimental program investigates the load capacity of a reactor pressure vessel (RPV) in steam explosion events.The second activity is hydrogen behavior and mitigation. Advanced models and numerical tools are developed to describe hydrogen sources, distribution of gases in containment, the various modes of hydrogen combustion, and corresponding structural loads.The third activity is ex-vessel melt behavior. The release behavior of melt after RPV failure is studied in DISCO and KAJET tests. In support of core catcher development, interaction with sacrificial and refractory materials, further melt spreading and cooling phenomena are investigated in KAPOOL, KATS, and COMET tests.The goal is to describe and quantify the governing mechanisms and to develop verified models and numerical tools that are able to predict maximum possible loads for severe accident scenarios on full plant scale. The work supported the development and assessment of the safety design of the French-German European Pressurized Water Reactor (EPR). It led to a broader understanding of severe accident phenomena and of controlling and mitigating measures that can also be of benefit for existing plants.