ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
Werner Scholtyssek, Gerhard Heusener, Fritz Hofmann, Helmut Plitz
Nuclear Technology | Volume 139 | Number 1 | July 2002 | Pages 10-20
Technical Paper | doi.org/10.13182/NT02-A3298
Articles are hosted by Taylor and Francis Online.
The research and development program at the Forschungszentrum Karlsruhe, performed within the Program Nuclear Safety Research, is centered around phenomena and processes that could possibly endanger the containment integrity of a large pressurized water reactor after a severe accident. The program includes three activities.The first activity is in-vessel steam explosion. Premixing phenomena are studied in the QUEOS and PREMIX test series. The efficiency of energy conversion is the subject of ECO tests. The BERDA experimental program investigates the load capacity of a reactor pressure vessel (RPV) in steam explosion events.The second activity is hydrogen behavior and mitigation. Advanced models and numerical tools are developed to describe hydrogen sources, distribution of gases in containment, the various modes of hydrogen combustion, and corresponding structural loads.The third activity is ex-vessel melt behavior. The release behavior of melt after RPV failure is studied in DISCO and KAJET tests. In support of core catcher development, interaction with sacrificial and refractory materials, further melt spreading and cooling phenomena are investigated in KAPOOL, KATS, and COMET tests.The goal is to describe and quantify the governing mechanisms and to develop verified models and numerical tools that are able to predict maximum possible loads for severe accident scenarios on full plant scale. The work supported the development and assessment of the safety design of the French-German European Pressurized Water Reactor (EPR). It led to a broader understanding of severe accident phenomena and of controlling and mitigating measures that can also be of benefit for existing plants.